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Towards an End-to-End Visual-to-Raw-Audio
Generation with GAN

Shiguang Liu, Senior Member, IEEE, Sijia Li, Haonan Cheng

Abstract—Automatically synthesizing sounds for different visual contents poses a challenge and there is a strong need to facilitate the
direct creation of realistic sounds. Different from previous works, in this paper, we propose a novel deep learning based approach,
which formulates sound simulation as a regression problem. This allows us to circumvent the complexity of the acoustic theory by a
novel, general-purpose neural sound synthesis (V2RA) network. Moreover, the end-to-end architecture of V2RA ensures full training
without any extra inputs, which thereby greatly improves the scalability and reusability over previous works. In contrast to conventional
visual-to-audio generation methods, the V2RA problem is first established and solved by generative adversarial networks (GANSs).
Furthermore, our network architecture can directly predict synchronized raw audio signals (unlike most existing approaches that handle
the audio through spectrograms) and generate sound in real time. To evaluate the performance of the neural network generator, we
specifically introduce two quantitative scores. Various experiments demonstrate that our V2RA network can produce compelling sound
results, which thus provides a viable solution for applications such as sound design and dubbing.

Index Terms—YVisual to audio, cross media, GAN, audio-visual synchronization.

1 INTRODUCTION

ESPITE over two decades of research in sound syn-
Dthesis for visual content [1], [2], [3], automatically
synthesizing matching sounds remains a demanding task in
computer graphics. One reason may be the diversity and
complexity of the acoustic theory. Different from current
physics-based sound synthesis methods, we formulate au-
tomatic sound synthesis as a regression problem from visual
signals to audio signals by leveraging advanced deep learn-
ing techniques. We propose an automatic visual-to-raw-
audio (V2RA) system that can circumvent complex acous-
tic theory and directly predict raw audio from soundless
videos in real time. There are many practical applications,
such as automatic Foley processing, image sonification for
visually impaired persons and several other joint audio-
video processing. Moreover, it requires little expertise to use
and reduces theoretical complexity significantly. Lastly, it is
an automatic procedure that can help foley artists reduce
tedious editing work.

Recently, physically-based modeling of sound has
gained increasing attention in computer graphics. Current
methods usually build on visual simulation with physical
parameters as the input for sound modeling. Advances in
this field have enabled successful synthesis of a wide variety
of sounds, for example, liquid sound [1], [4], [5], fire sound
[6], and impact sound [2]. Generally, there are two main
issues for these tasks: i) how to achieve synchronization
between visual and audio, and ii) how to improve the timbre
of the synthetic audio. Since these physics-based sound
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simulation methods are generally driven by physical pa-
rameters from the animation, the synchronization problem
is relatively tractable. However, the acoustic theories that
these methods depend on for sound modeling are usually
complex and specialized for a single type of sound. To gen-
erate realistic sound results, some techniques explore differ-
ent solutions such as multi-scale simulation [7], parameter
estimation [2], complex acoustic bubbles [5], and statistical
simulation [8]. Each of these tasks focused on one particular
kind of sound, which limits their scalability and reusability,
although the goal remains the same, i.e., generating audio
from visual content. Moreover, it is difficult for physics-
based sound simulation to generate ideal sound for types
of animations or movies which suffer from the problem of
indirect control. For example, two-dimensional animations,
such as keyframe-based (e.g., car movement) or behavioral-
based animation (e.g., animal crying), were discussed in [9]
that usually lack three-dimensional models.

Granular synthesis methods are also common in sound
synthesis technology [10], [11]. The input sound is sampled
on a small time scale and split into small grains around 1 to
50 ms. The grains are synthesized in different ways to gen-
erate various sounds. However, these methods need to set
many parameters manually, which have a significant impact
on the generated sounds. Moreover, the generated sound
needs to match the visual information. To overcome these
limitations, we attempt to bypass the modeling of complex
and specialized acoustic equations. Radically different from
previous works, we no longer pay attention to separate,
special-purpose machinery. Instead, we formulate these sim-
ulation tasks as a regression problem. That is, we translate
one representation (visual content) into another (raw audio).
This also makes it possible to investigate a general-purpose
sound synthesis method for different types of animations
(with or without a three-dimensional model) and videos.
However, the problem of visual-audio regression is rather
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difficult because the video and audio used for the generation
have different temporal and spatial scales. High quality
audio synthesis occurs at a sampling rate of 44.1 KHz, about
1000 times more frequently than video (Figure 1(a)). To build
an end-to-end V2RA generation system, we need to bridge
this gap. As shown in Figure 1(b), the principal components
of video frames include characteristics such as gradient and
boundary that are unusual in audio structure. Therefore, it
is challenging to learn the rules of synchronization through
mismatched features.

Fortunately, some deep learning based techniques [12],
[13], [14] have been proposed to study whether computa-
tional models can learn the relationship between visual and
audio. These techniques endow us with a preliminary un-
derstanding of the deep visual and audio features. However,
most of these attempts generated different representations
of the sound through an image-to-image translation which
is different from our raw audio simulation task. For exam-
ple, a Long Short-Term Memory (LSTM) based method [12]
was developed for hitting and scratching sound synthesis
with cochleagram as the representation of the sound. Sim-
ilarly, a Conditional Generative Adversarial Net (CGAN)
based method [13] was proposed to synthesize sounds of the
instrument with Log-amplitude of Mel-Spectrum (LMS) for
sound representation. Due to the vast differences between
visual features and audio features, instead of directly out-
putting raw audio, these methods generate a time-frequency
representation (e.g, cochleagram and LMS) which thereby
cannot be directly used for our automatic sound synthesis
task. Zhou et al. [14] directly built connections between
visual contents and raw audio. However, they use Sam-
pleRNN [15] as the sound generator, which is autoregressive
and inherently slow during inference.

To overcome the above limitations, we propose an end-
to-end network framework that contains a novel video
encoding process and a V2RA Generative Adversarial Net-
work (V2RA-GAN). The video encoding process is pro-
posed to bridge the gap of spatial and temporal scales, and
the V2RA-GAN can learn the inherent difference and gener-
ate matching sound in real time. More precisely, we encode
the visual information with fc6 feature of VGG19 network
[16]. Then we select features at equal intervals and connect
them to a 44100-dimensional vector with the same length of
audio vectors. The V2RA-GAN is designed for audio gen-
eration with several architectural adjustments. To train and
test the proposed architecture, we further clean and extend
existing datasets [12], [14] to build a more suitable dataset,
containing hundreds of videos for different natural scenes
such as videos with dogs and fireworks. Furthermore, we
introduce two quantitative evaluation scores to assess the
audio quality and synchronization rate. Various tests and
comparisons show that the proposed network architecture
and training procedure enable high quality V2RA genera-
tion. In summary, we make the following contributions:

1. We propose an end-to-end, general-purpose system
for the automatic, synchronization-aware sound synthesis
task, which can generate a wide variety of sounds. The
proposed technique can successfully bridge the two large
gaps between video and audio and produce convincing
results.

2. We propose a video encoding process, which is fully
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Fig. 1. Two challenges of end-to-end V2RA generation. (a) shows the
scale structure of video frames (top) and the matching audio (bottom) in
the same time interval. (b) shows a frame of video and visualizations of
the top 5 features of the VGG19 network (top) and the visualization of
the sound corresponding to the video frame (bottom). The gray value of
the pixels corresponds to the amplitude of the waveform.

trainable without any extra inputs and therefore greatly
improves the scalability, reusability, and generation speed.

3. As far as we know, our quantitative scores are the first
objective measurements for the visual to audio generation
task, which can overcome the limitations of previous studies
that rely solely on psychological studies.

2 RELATED WORK

In this section, we mainly review existing techniques that
are highly related to our work. We classify the related
works into two main categories: physics-based techniques
and learning-based techniques.

2.1 Physics-based techniques

Traditional sound effect production is a laborious practice
for computer animation and movies. To achieve automatic
sound generation, several physically based methods are
proposed that are synchronized with visual animation.
Physics-based sound synthesis has led to improved sound-
generation techniques for computer-animated phenomena,
including water [1], [4], [5], wind [17], fire [6], [18], [19], [20]
and rigid bodies [21], [22], [23], [24]. The general procedure
of these methods includes simulating animation models
and acoustic models, extracting suitable parameters and
rendering both animation and audio. The advantage of the
physical methods is flexibility, because sound synthesis and
animation production can be adjusted by physical parame-
ters. Moreover, since most of these methods are based on
example recordings or acoustic theory, the quality of the
synthesis results can usually reach a satisfactory level.

However, there is still an open problem of physics-
based approaches for generic objects. To establish connec-
tions between video and audio using physics-based meth-
ods, one needs to simulate animation models and acoustic
models, extract suitable parameters and render both video
and audio. In contrast, the learning-based methods are
more generic and attempt to explore whether computational
models can learn the association between visual and audio
directly just like human perception. Our work also adopts a
learning-based way to train a model that can automatically
and directly generate different types of audio conditioned
by input video frames.
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Fig. 2. The framework of our method. We train an end-to-end neural network to map video sequences to raw audio. The network contains three
parts: video encoder, V2RA generator and V2RA discriminator. We encode the video frames into 4096-dimensional vectors and concatenate them
to 44100-dimensional vectors. An adjusted conditional GAN for high-dimensional input is used for V2RA transformation.

2.2 Learning-based techniques

There is a lot of research devoted to exploring the relation-
ship between visual and audio [25], [26], [27], [28], [29],
[30]. Recently, some researchers [12], [13] have begun to
explore the visual-to-audio generation task. Owens et al.
[12] proposed a neural network which consists of a Con-
volutional Neural Network (CNN) and a long short-term
memory unit (LSTM) for synthesizing hitting sound. Chen
et al. [13] developed a generation model between image and
sound.

The algorithms in [12] and [13] are based on cochleagram
and LMS, respectively. Both of the above learning-based ap-
proaches treat audio as image-like spectrograms and there-
fore cannot directly generate raw audio signals. In essence,
these methods are still transforming an image into another
image. Building an end-to-end V2RA generation system
would be more direct but also more challenging, because
audio and video have mismatched temporal scale, different
spatial dimensions, and distinct features. To implement a
more direct way, Zhou et al. [14] generated natural sound
for videos collected in the wild through a SampleRNN
model [15]. However, it is inherently slow during inference
because SampleRNN is an autoregressive model. To address
the aforementioned limitations, we propose a novel solution
to synthesize audio directly, which produces convincing
results with superior efficiency.

CNNs provide a promising way for identifying the ac-
tion in videos and have become the common workhorse
for a wide variety of tasks [31], [32], [33], [34]. An open
problem of CNNs is the requirement of expert knowledge
to design effective losses. Fortunately, Generative Adver-
sarial Networks (GANSs) [35] provided a discriminator to
automatically learn a loss function appropriate for reaching
a goal. In recent years, GANs have achieved a good level
of success to generate high-dimensional signals and some
works [36], [37] have proved the feasibility of using GANs
to synthesize sound. Moreover, Donahue et al. [36] demon-
strated that GAN is capable of synthesizing audio in an
unsupervised setting and it is faster than the autoregressive
mode. However, we need both video frames and audio as

input for training, so the traditional GANs do not apply to
our task. Therefore, in this paper, we explore GANs in the
conditional setting and concatenate video information as the
condition to control the change of audio. Conditional GANs
[38] have been vigorously studied in the last two years and
many techniques for translation tasks have been previously
proposed. For example, prior and concurrent works have
used conditioned GANSs on discrete labels [38], [39], text
[40], music [41] and images [42]. However, the V2RA gener-
ation task is quite different from the works mentioned above
in Section 1. We need to adjust the encoding format and
design the appropriate filter and loss function, which we
will discuss in detail in Section 3. As the first attempt to
present a framework with GANs in the conditional setting
for an end-to-end V2RA generation task, our work suggests
that the V2RA-GAN is capable of synthesizing convincing
audio in a supervised setting.

3 V2RA GENERATION

In our work, the V2RA generation task is formulated as a
regression problem to map a sequence of video frames to
a sequence of raw audio waveform. We solve the problem
with three main ingredients, namely a video encoder (the
blue part in Figure 2), a V2RA generator (the green part
in Figure 2) and a V2RA discriminator (the red part in
Figure 2). A silent video is fed into the video encoder
to bridge the spatial and temporal gaps. Then, the video
features (fc6 features) are generated automatically and the
generated video features are concatenated to form a 44100-
dimensional vector as the input of the V2RA generator.
Additionally, the long vector is convolved with the output
of the generator as the input of the V2RA discriminator to
determine the quality of the generator output. The V2RA
generator and V2RA discriminator together constitute the
V2RA-GAN, which aims to transform the video features
into raw audio signals.

We discuss our video encoding process in Section 3.1.
Then, in Section 3.2, we describe the V2RA-GAN archi-
tecture. Finally, in Section 3.3, we put forward two audio
optimization schemes to adjust the audio results since the
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Fig. 3. The process of video encoding. Take SR, ;4co = 30, SRqudio = 44100 and At = 1 as an example. We concatenate the selected video
feature vectors {v1,q, v1,2q,---,v1,p-q+ (yellow blocks) to generate the final video feature vector V; (blue block) and segment the entire audio

sequence into audio vectors X; (green block) with equal lengths.

audio channel of the training video usually has some noise-
like background sound.

3.1 Video encoder

As the first step of the V2RA generation, the video encoder
is proposed to bridge the spatial and temporal gaps between
video and audio. As shown in Figure 3, we specifically
design a new video encoding method to generate video fea-
tures that have matching lengths with audio sequences. This
makes it easier for networks to learn mapping relationships
between video and audio. To design the video encoder for
our task, we first formulate the V2RA training problem as:

G(Y1y ey Ym) = T1y o0y Ty € X,y €Y 1)

where X represents the audio set, Y represents the frame
set, Y1, ..., Ym (ranging from O to 255) represents input video
frames, G(y1, ..., Ym) represents output raw audio values
(ranging from -1 to 1) and «1, ..., z,, denotes real raw audio
values (ranging from -1 to 1). An ideal V2RA model is to
meet the following goal:

yn))] - &)

Here, Dis(+) is a distance function to calculate the similarity
between audio sequences which we will introduce in Section
4.3.

The collected videos usually have different resolutions,
for unified processing, we reshape the video frames into
the scale of 256 x 256 x 3. However, the scale of 1s audio
is usually 1 x 44100 x 1. To bridge the spatial gap, we
first encode the video frames to have the same length as
audio sequences. For each video frame y;, we construct the
video feature vector v; through a VGG19 network [16] and
v; is transformed to a 1 x 4096 x 1 vector. Then we need
to bridge the temporal gap. In the same time interval At,
m = At - SRyigeo and n = At - SRyydio, Wwhere SRy;qeo
and SR,udio are the sampling rates of video and audio,
respectively. Thus, n > m due to different sampling rates of
video and audio. To make sure the final video feature vector
V has the correct temporal length, for each time interval At,
we concatenate p video feature vectors of ¢ neighbor frames
(yellow blocks in Figure 3) as follows:

‘/t = Ut,q @ Vt,2q @ @ Vt,p-q- (3)

min [Dis(G (Y1, -, Ym) s (T1, -
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Fig. 4. Training a conditional GAN to map a video to audio. Unlike
previous conditional GANs (left) with Gaussian noise z (red dotted box),
we use V' as both the input and the condition (right).

Here, GB represents the concatenation operator, p =
Floor[SRaudio/ 4096] is the number of video feature vectors
and ¢ = Floor[SRyiqeo /D] represents the interval of video
feature vectors. For the missing parts, we pad zeros in equal
intervals to ensure a complete match of sequence lengths.
Thus, the V2RA problem can be reformulated as:

G(V17V27~'7VAt) _>X17X27"'7XAta (4)

where Xy = {241,212, Tt 8Ronuiot »t € {1,2,..., At}
Therefore, V; and X; have the same length as shown in
Figure 3 and the video frames are encoded in the same
spatial and temporal intervals as the audio.

3.2 V2RA-GAN architecture

After we generate the video features Vi(t € {1,2,...,At})
and audio vectors X;(t € {1,2,...,At}), a V2RA-GAN is
proposed to transform the video features to audio vectors.
Different from GANSs that learn a generative model of data,
to solve the V2RA generation problem, we take V; as the
condition to force the output audio vectors conditioned on
input videos. Thus, the V2RA-GAN is in the conditional
setting and contains both V; and X; as input in the training
process. Similarly with other types of GANSs, the V2RA-
GAN also contains two parts, namely a V2RA generator
and a V2RA discriminator. The V2RA generator G of V2RA-
GAN learns a mapping from video feature vectors V; to au-
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dio sequences X, i.e., G (V1,Va, ..., Var) = X1, Xo, ..., Xaq.
And the V2RA discriminator D is trained to determine
if G(V%) is real or fake under the condition V;. Since the
final output is a set of raw audio signals, our V2RA-GAN
differs from the architectures of prior works which were
popularized for image synthesis.

Large receptive fields. Different from image synthesis,
high quality audio synthesis occurs at a sampling rate of 44.1
KHz which is much higher than that of a video clip. There-
fore, it is required to adapt the V2RA generator and V2RA
discriminator according to the characteristics of audio. The
input of the V2RA generator is V; and the input of the
V2RA discriminator is V; @Q G(V4), both of whose lengths
are 44100. This suggests that filters with larger receptive
fields are needed to process the vector. Therefore, we mod-
ify the convolution operation and transposed convolution
operation of the conditional generator to widen its receptive
field. Specifically, we use longer one-dimensional filters of
different lengths instead of two-dimensional filters. The
reason for choosing the filters of variable length is to make
the output vector shape an integer after the convolution op-
eration and transposed convolution operation. The details
of the filter length can be found in Table 1 and Table 2.

Audio filter. Since the frequency of the sampled en-
vironmental sound has a wide distribution, there exists
undesirable frequency information in the output results.
Inspired by [36], we add a filter with a long window (513
samples) to filter out undesired frequencies in the last layer
of the generator. The length 513 (see Table 1) is chosen to
keep the length of the output audio sequence unchanged.
We tested the effect of the audio filter as described in Section
4.5 and the results show that adding the audio filter greatly
improved the audio quality.

Loss function. Typically, the loss function of a traditional
conditional GAN [38] is the cross-entropy loss function
which can be expressed as:

mGin max L(D,G) =Exvepyua(x,v)log(D(X, V)]
+E2~Pz(z)7v~pdatn,(v) [lo-g(l - D(G(z’ V)’ V))]

where D is trained to maximize the loss and G is trained
to minimize the objective. As the conditional information,
V is fed into both the discriminator and the generator as an
additional input layer. To improve the training stabilization
and the quality of the generated samples in GG, we adjust
the loss function. First, we use the least-squares (L.S) loss
function to replace the cross-entropy loss function, since LS
loss can avoid the problem of vanishing gradients as proven
in [43]. Although it is only proved in the image translation
domain, according to the comparison results in Section 4.5,
the LS loss function in V2RA generation also has a better
effect for audio. Therefore, the formulation in Equation (5)
changes to

)

. 1
Hgnﬁ(D) = §EX,V~pdm(X,V)[(D(X7 V)—1)? "
6
1 9
+§Ez"4)z (z)7vadata(V) [(D(G(z7 V)v V))2]
. 1
ménL(G) =§Ez~pz(z),v~pdm(vy . @)

(D(G(2,V),V) = 1)*]

Our task is formulated as a regression problem. There-
fore, we chose common regression loss to constraint our
training procedure. Specifically, we chose the L1 loss to
minimize the distance between the generated results and
ground truth because the L1 loss is more robust to exception
values. Our training videos are mostly in the wild and
there is much noise in the videos. Therefore, we add the
L1 loss for its robustness to the generator to generate more
realistic results. Adding such a term has also been proven
to be effective in the image translation domain [42]. We
have also experimented on the effects of adding the L,
loss function and found that L; + LS achieves the best
performance. The magnitude of the L; norm is controlled
by a new hyperparameter \. Finally, contrary to standard
GAN formulations, we only provide noise by the use of
dropout and no longer use z as input as shown in Figure 4
(yellow part). This is because the generator is conditioned
on the input video features V, which can provide variability
of the generator even without z. Moreover, this design has
been successful in image translation processes [42] and we
prove that it is also feasible for the audio generation task in
our experiments. Considering all of the above observations,
our final loss function is designed as follows:

1

mDiIl ,C(D) :ﬁEX,Vdiata(X,V) [(D(Xv V) - 1)2}
. , 8
5BV apaara (DG V), V))?)
1
min £(G) =3By [(DGV).V) =17

FAEX Y ~pgare (x,0) [IIX = G(V)1]

In Table 1 and Table 2, we list the full architectures for
our V2RA-GAN generator and discriminator, respectively.
We use convolution layers with leaky ReLU activations and
strided convolution layers with ReLU activations. Batch-
Norm is not applied to the first convolution layer in both
the generator and the discriminator.

3.3 Audio optimization schemes

The audio results generated by V2RA-GAN may have an
undesirable timbre. Here, we design two audio optimization
schemes that can help improve the audio quality.

Audio de-noising The first optimization scheme is a de-
noising algorithm inspired by [44]. To generate clear audio,
we first reformulate the audio signal G[n| synthesized from
the V2RA-GAN into two parts as:

Gln] = fln] + €[], (10)

where f[n] denotes the clear signal and €e[n] denotes noise.
More technical details of the solution can be found in [44].

Various experiments showed that the above procedure
is robust to signal structures with low frequency (e.g., the
bird category in our dataset as shown in Figure 5(a)), which
can not achieve good performance in categories such as
dog or wood. Because the noise and the high-frequency
information of sounds in these categories are mixed together
(as shown in Figure 5(b)), the de-noising strategy alone is
not suitable for them.

Peak-match For sounds like a dog barking, the noise
and the high-frequency information of sounds are mixed.
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24 Input V' Uniform(-1,1) (n,44100) 2 [GLpeak; vaeak] — findpeaks(Gv);
25 Conv1D (Stride=3) (9,c,d) (n,14700,d) 3: [RefLpeak, RefVipear] < findpeaks(Ref);
26 Conv1D (Stride=3) (9,d,2d) (n,4900,2d) 4: Delete GVpeqr, < 0.1 and RefVjeqr < 0.1
27 Conv1D (Stride=4) (12,2d,4d) (n,1225,4d) 5: Initialize Go(1 : len) with zero;
28 Conv1D (Stride=5) (15,4d,8d) (n,245,8d) 6: Npeak < length(GVpear);
29 Conv1D (Stride=5) (15,8d,8d) (n,49,8d) 7: fori=1: Npeqr do
30 Conv1D (Stride=7) (21,84,8d) (,7,8d) 8:  StartPoint <— RefLpear (7);
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35 Trans Conv1D (Stride=4) (128d4d)  (n,12254d) 12: Normalize Go;
36 Trans Conv1D (Stride=3) (9,4d,2d) (n,4900,2d)
37 Trans Conv1D (Stride=3) 9,2d,d) (n,14700,d)
38 Trans Conv1D (Stride=3) ©9,d,0) (n,44100,c) Therefore, to improve the audio quality of these categories,
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40 Conv1D (Stride=1) (513,¢,0) (n,44100,¢) The main idea of the peak-match process is to search
41 for and match the effective sound part (the circled part
45 in Figure 5(b)). Owing to the synchronization, that is, the
43 change of the audio has already been accurately obtained,
we can search the peak of the waveform and match the
44 corresponding peak from recordings. The recordings we
45 utilized are from the Adobe Audition Sound Effect !. The
46 S TABLE 2 process is summarized in Algorithm 1.
47 The discriminator architecture of V2RA-GAN.
48
49 Operation Kernel Size  Output Shape 4 EXPERIMENTS
?1) Input X a“d_G(V) (n,44100,2¢) In this section, we first introduce the datasets in Section 4.1
55 ConvlD (Str?de:‘l) (16,2¢,d) (n,11025,d) and the training details in Section 4.2. Next, we propose
3 Conv1D (Stride=4) (16,d,2d) (n,2756,2d) two quantitative indicators for audio quality and evaluate
> Conv1D (Stride=4) (16,2d,4d) (n,689,4d) the results based on both indicators in Section 4.3. Then,
>4 Conv1D (Stride=1) (4,4d,8d) (n,688,8d) we compare our technique with state-of-the-art methods in
g 2 Conv1D (Stride=1) (4,8d,8d) (n,687,8d) Section 4.4. We further discuss the influence of network
57 1. https:/ / offers.adobe.com/en/na/audition/ offers/audition_dlc/
58 AdobeAuditionDLCSFX html?cq_ck=1407955238126&wcmmode=
59 disabled
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architecture adjustments on performance and audio opti-
mization effects in Section 4.5 and Section 4.6, respectively.
Finally, we compare the results from a user study in Section
47.

4.1 Dataset

To explore the generality of our proposed V2RA networks,
we tested the method on a variety of tasks and categories,
including animated videos and videos in the wild. The
information of the testing datasets [12], [14] is listed as
follows:

o VEGAS [14]%: This dataset contains 28109 videos that
include both video and audio channels. There are 10
categories in the dataset and the total length is 55
hours.

o Greatest Hits dataset [12]°: This dataset contains 977
videos (including both video and audio channels) of
human probing (e.g., hitting) objects with a drum-
stick.

We chose videos of fireworks and dogs from VEGAS and
impact sounds of cloth, wood, gravel and plastic from the
Greatest Hits dataset. Besides, we collected bird videos from
a free HD stock video website*. We randomly chose clean
videos (with less background noise) from each category for
training and testing. For example, we filtered out videos
with background music or videos with voice overs. We
chose these categories because they are sensitive to syn-
chronicity. Furthermore, the match between video and audio
is easier to observe in these categories. Finally, we chose
about 10-30 videos for each categories from the exisiting
datasets. For the bird videos, we only get limited videos
due to the difficulty of collection and collected about 360s in
total. For each task, we split each dataset into the training
and testing sets (75% training and 25% testing). During
training, we utilized VEGAS, Greatest Hits dataset and bird
videos for V2RA model training. During testing, we tested
not only wild videos in the test set, but also animated videos
from previous research [2].

4.2 Training details

The proposed model is trained on each category indepen-
dently. The difficulty increases sharply if we train our model
on mixed categories. The model needs to classify the video
first and then generate the corresponding audio. This means
the more complex correspondence between visual and au-
dio the higher requirements for the generator. The complex
problem will result in lower quality sound results. There-
fore, we train a separate model for each category. We sample
the videos at 30 FPS (300 frames for 10 seconds) and sample
the audio at 44.1kHz, i.e., 441000 times per 10 seconds. We
use 44.1kHz audio to preserve richer details. We randomly
select 25% of the videos from each category for testing,
leaving the remaining videos for training with no overlap
between paired data. The audio files used for training are

2. http:/ /bvisionl11.cs.unc.edu/bigpen/yipin/visual2sound_
webpage/visual2sound.html

3. http:/ /andrewowens.com/vis/

4. http:/ /www.videezy.com

TABLE 3
V2RA-GAN hyperparameters and their values.

Name Value
Num channels (c) 1
Batch size (n) 64
Model size (d) 64
Loss LS
D updates per G updates 2
Optimizer Adam
TABLE 4

ODG value and subjective impairment scale.

Different Description of Impairments
Grades
0 Imperceptible
-1 Perceptible but not annoying
2 Slightly annoying
-3 Annoying
-4 Very annoying

the audio that comes with the video in the dataset. The
audio files utilized for peak-match are randomly selected
from the Adobe Audition Sound Effect dataset. During
training, we apply the Adam Stochastic Optimization [45]
with a learning rate of 0.001 and a dropout rate of 50%. In
Table 3, we list the value of hyperparameters we used in
our experiment. All the experiments are trained on a single
NVIDIA Quadro 5000 GPU. At test time, we can generate a
second audio in 0.03s on this GPU.

4.3 Evaluating the V2RA generation quality

How to quantitatively evaluate the performance of a neural
network generator for audio has always been a challenging
topic. Donahue et al. [36] used the inception score [46] for
quantitative measures. However, they pointed out that the
inception score was not an accurate proxy for human per-
ception. Therefore, we explore a quantitative measurement
based on the study of perception and psychology [47], [48]
and put forward two quantitative indicators in terms of
audio quality and audio similarity.

TABLE 5
Quantitative evaluation.

Audio 0OSG

Figure 6(a) middle & Figure 6(b) middle 9.0417
Figure 6(a) bottom & Figure 6(b) bottom 3.8867
Ground truth & [2] 33.0061
Ground truth & Ours 31.7959
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Fig. 8. The effect of filter layers (in the fireworks category). (a) is the result with filter layers. (b) is the result without filter layers. We can observe that

the result with filter layers is clearer.

4.3.1 Quality assessment

Sound quality is typically an assessment of the accuracy,
enjoyability, or intelligibility of audio output from an elec-
tronic device. By comparing subjective tests and Perceptual
Evaluation of Audio Quality (PEAQ) values in [48], we
adapt the PEAQ algorithm for audio quality assessment
which is used for voice over Internet Protocol. The qual-
ity assessment algorithm contains a model that outputs
variables combined with a trained neural network to give
a single metric. This metric, namely objective difference
grade (ODG), can measure the degradation of a test input
relative to a reference input. Specifically, the neural network
has been trained to give good matches to the subjective
impairment scale as shown in Table 4.

ODG = b'min + (bmaw - b7nin)3ig(D1)a (11)

where by, = —3.98, bar = 0.22, sig(.) is an asymmetric
sigmoid and Dy is a distortion index. More calculation
details can be found in [49], [50].

4.3.2 Similarity assessment

To evaluate the similarity between the ground truth and
synthesized audio, we propose the objective similarity grade
(OSG) which contains three acoustic features. The choice of
acoustic features is inspired by a psychological research [47],
that investigated the acoustical correlates of similarity and
categorization judgments of environmental sounds. Thus,
we combine three acoustic features that have the strongest
correlation with the correlation coefficient r. The correlation
coefficient can be found in [47]. The final OSG is a combina-
tion of three parts: maximum modulation spectrum (MMS),
mean spectral flux (MSF) and root mean square (RMS). In
particular,

OSG =711 - MMS + 19 MSF + 13- RMS, (12)

where 1 = 0.57, o = 0.52 and r3 = 0.45. The smaller the
OSG value, the more similar the two audio clips are, and the
OSG value of two of the same audio clips is 0.

4.3.3 Nearest Neighbor Retrieval

We expect that our results have significant differences for
different categories. Therefore, we conducted a nearest
neighbor retrieval experiment as a baseline to show that
our model can learn good correspondence between visual
and audio. The audios in the test set make up the retrieval
dataset and we use visual features to retrieve corresponding
audio in the dataset. In this section, we consider the ques-
tion: “Is the retrieved audio in the same category with the
video?” The average classification accuracy is 15.71% that

is better than chance (14.29%), which also shows that our
model is able to learn reasonable correspondence between
visual and audio.

4.4 Comparisons with state-of-the-art techniques

In this section, we compare our V2RA generation technique
to both physics-based methods and learning-based meth-
ods.

4.4.1 Comparisons with physics-based methods

As discussed in Section 2, physics-based methods can usu-
ally produce highly realistic sounds especially the example-
guided methods that synthesize the results by adjusting
and splicing samples. Thus, these methods have obvious
advantages in timbre. Therefore, to show the timbre quality
of our results, we compared our method with an example-
guided physics-based sound synthesis method [2] for wood
scenes. Figure 6 illustrates the audio results for two wood
scenes synthesized by [2] and our method. We can find that
the timbre of the two results are very similar.

We also quantitatively evaluated the audio results as
shown in Table 5. The first two rows represent our similarity
measurement for each type of method, and it can be ob-
served that the audio produced by our method has a higher
timbre consistency (lower OSG value). Then we compared
the results synthesized by the two methods with real wood
sound recordings. The results show that our method has a
better match with the ground truth. Moreover, the method
in [2] is a specialized method for generating impact sounds
only, but our V2RA generation is a general method which
can achieve comparable sound effects.

4.4.2 Comparisons with learning-based methods

We further compared our results with the state-of-the-art
learning-based methods [12], [14]. The method in [12] can
only synthesize cochleagram (a type of time-frequency rep-
resentation) rather than raw audio. So this method needs
extra input (cochleagram) to achieve ideal performance.
In contrast, our method is end-to-end and no additional
input is required. Moreover, our method is general and can
directly generate the waveform. From the circled part in Fig-
ure 7(a), we can find that our result contains ambient noise
that is closer to the ground truth. Zhou et al. [14] proposed a
SampleRNN based method for automatic sound synthesis.
This method is also end-to-end. However, because their
network lacks the deep understanding module of visual
content, the temporal match between visual content and
audio is not ideal. As shown in Figure 7(b), in the video,
the dog barks only once (the rest is background voice in
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Fig. 9. Optimization schemes effects. (a)-(e) show the spectrum of original results, results after de-noising and results after peak-match, respectively.

the ground truth), while there were two barks (see the
circled parts) in the result of [14]. In Figure 7(c), we can
observe that redundant frequency bands (in the blue circles)
appear which are quite different from the spectrogram of
the ground truth. There was an obvious burst in our result,
while there was continuous sound in the result of [Zhou et
al. 2018]. These results show our method can achieve more
synchronicity than previous work. Moreover, the method
in [14] is not suitable for real-time applications because of
the autoregressive model. As can be seen from Table 6,
the ODG values are relatively close which indicates that the
quality of the audio generated by the two methods is similar.
However, the OSG values have been improved significantly.

4.5 Network architecture evaluation

We further evaluated the architecture of our proposed
V2RA-GAN, based on both qualitative and quantitative in-
dicators discussed in Section 4.3. The qualitative evaluation
is the same as the aforementioned operation (Section 4.4).
The results for our evaluation appear in Table 7. We added
skip connections for the generator which is known as ‘U-
Net’ in image processing. However, different from the great
performance achieved in the image processing field, the
addition of skip connections does not improve the audio
quality (see Table 7). This may be due to the different
structures between audio and image data. To determine if an
audio filter improves the learning procedure, we compared
the results with filter layers and without filter layers, and
the results (Table 7) show that the filter layer can indeed
improve the audio quality. More intuitively, we can observe
that the sound will be clearer with filter layers (see Figure 8).

We can also observe that adding a Gaussian random vector
z does not improve the sound quality. Therefore, we do not
use a Gaussian random vector in our design. We also adopt
reshape operation instead of random cropping operation.

We also verified the effect of different loss functions on
our network. As introduced in Section 3.2, the loss function
of our V2RA-GAN is L; + LS. Thus, we first compared LS
with Ly + C'E (cross entropy) loss. From Table 7 we can
observe that the L; + LS loss function has the best quanti-
tative evaluation score. Comparing the score for the LS loss
function and L; + LS loss function in Table 7, we argue
that adding the L; loss function can greatly improve the
quality of audio results. Therefore, by evaluating different
combinations of L loss, cross-entropy loss and LS loss, it
can be concluded that the combination of L; loss and LS
loss achieves the best performance.

4.6 Validation of the optimization schemes

Figure 9 illustrates the benefit of the optimization schemes
proposed in Section 3.3 and Table 8 lists the quantitative
evaluations. We present the spectra of five typical cases.
From the spectra in Figure 9(a), we can find that the fre-
quency of bird singing and frequency of background noise
varies. Thus, the de-noising process is more suitable for
signals whose frequency lies in a narrow band. The result
of a peak-match algorithm contains some additional high-
frequency information. In Figure 9(b), we notice that for
sounds like dog barking, results after de-noising may lose
part of the frequency information that is mixed with back-
ground noise. Therefore, the peak-match process is more
suitable for environmental sound whose frequency is in
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TABLE 6
Quantitative evaluation for the results by Zhou et al’s method [14] and our method in Figure 7.

Audio ODG MMS MSF RMS 0OSG
[14] -0.1710 2.9515 11.5635 0.4626 7.9039
Our method -0.1789 1.1951 4.3435 0.3373 3.0916

Ground truth -0.2157

0 0 0

TABLE 7
Network architecture evaluation.

Experiment ODG MMS MSF RMS OSG

Full system -0.2124 0.4986 0.3903 0.0583 0.5134

+ z as input -0.2237 0.7325 0.4417 0.0832 0.6846

+ skip connections for the generator -0.3362 3.4587 1.2723 0.0425 2.5429
- audio filter (the last layer of the generator) -0.2319 11.3408 21.7192 0.0330 11.3408
+ random crop -0.2202 0.2570 20.6246 0.0230 10.8536
L1 + LS loss function -0.2124 0.4986 0.3903 0.0583 0.5134
Ly + CFE loss function -0.2350 0.8933 43.8061 0.0670 23.3185
LS loss function -0.2216 1.2525 58.7788 0.1429 31.3402
Ly loss function -0.2370 0.3037 8.4975 0.1209 4.6462
CE loss function -0.2327 0.1730 9.3176 0.1303 5.0024

ground truth -0.2343 0 0 0 0

a wide band. Furthermore, we notice from the spectra in
Figures 9(c)- 9(e) that there is no significant difference before
and after post-processing. This is due to the fact that the
training data in these categories contain little environmental
noise. As a result, our generated results do not have much
background noise either. Moreover, we also compared the
effect of different recordings selected by users in the peak-
match process. Because of the variety of these sounds, al-
though choosing different recordings will produce different
results (see Figure 10), it does not affect the authenticity of
the final video. The results can be heard in the accompany-
ing video.

4.7 User study

In addition to the quantitative evaluation, we further con-
ducted a user study to qualitatively evaluate the proposed
model with the two optimization schemes and qualitative
evaluation is the same as the aforementioned operation
(Section 4.4). In the experiment, we compared the video
with the audio generated by our method with the real
recorded video from the dataset. Specifically, twenty par-
ticipants were involved in our user study, whose ages are
around twenty. We randomly chose two examples from
each category and showed them to participants. In each
scenario, the participant is asked a question: “How do you
rate the quality of this video?” The score for each clip is on
a scale from 1 to 5, where 1 is labelled “Very bad” and 5
“Very good”. The quality of sound was evaluated from two
aspects: sound clarity and synchronization between sound
and visual contents. The results are illustrated in Figure 11.
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Fig. 10. Comparisons of different recordings utilized in the peak-match
process. Although the timbre varies with different recordings (in the
gravel category), it does not affect the synchronization of the results.

Observe in Figure 11 that for the videos with clear sound
(gravel, wood, cloth and plastic), participants were easier
to distinguish which video is ground truth. This is because
the real audio is recorded in a lab environment and has
been denoised. Therefore, real audio is clearer and easier
to achieve high scores. As for the other three categories,
participants have trouble distinguishing which video is the
real one. Overall, our generated audio achieves good scores
and have good quality.

We also conducted another user study to show that our
model can learn good correspondence between audio and
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TABLE 8
Optimization schemes evaluation.

Categories Original result after de-noising after peak-match
(ODG/0SG) (ODG/0SG) (ODG/0SG)
Bird -0.2347 / 9.6662 -0.1319 / 8.4831 -0.1572 / 10.7734
Dog -0.2081 / 3.5430 -0.1729 / 3.4476 -0.1697 / 1.1701
Firework -0.3129 / 1.3317 -0.2744 / 0.7514 -0.2617 / 0.7374
Cloth -0.0909 / 0.1124 -0.0907 / 0.1120 -0.0907 / 0.1097
Wood -0.1155 / 0.0308 -0.1074 / 0.0307 -0.1050 / 0.0308
Gravel -0.1327 / 0.0217 -0.1225 / 0.0223 -0.1314 / 0.0217
Plastic -0.1156 / 0.0778 -0.1147/ 0.1746 -0.1155 / 0.0658
TABLE 9
Comparison with previous work.
Method sound quality synchronization overall quality
[12] 4.50 4.75 4.40
Ours 4.50 4.75 4.50
[14] 335 2.85 3.00
Ours 3.65 4.15 3.35
s visual. To compare with our generated results, we synthe-
45 sized mismatched videos artificially. Specifically, for each
a given video, the mismatched audio was randomly chosen
35 from another video of the same category. The results are
2: | illustrated in Figure 12. We can observe that our generated
5 results achieve higher scores overall. This shows that our
15 results have a good match between visual and audio.
1 We also compared our results with previous work. We
0.5 I I I I I compared dog and firework sounds with [14]. We also
0 compared gravel, wood, cloth and plastic sounds with [12].
& £ é&' é\x Q Q\O‘ For a more obvious comparison, we asked each participant
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Fig. 11. User study results on the audio quality.
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Fig. 12. User study results on the correspondence between audio and
visual.

three questions: “How much do you rate the sound quality
of this video?”, “How much do you rate the synchronization
between sound and visual contents?”, and “How much do
you rate the overall quality of this video?”. We calculated
the average scores of different categories and the results are
illustrated in Table 9. It can be observed in Table 9 that
our results achieve higher scores overall and have good
synchronicity.

5 CONCLUSIONS AND FUTURE WORK

We designed a conditional GAN approach for V2RA gen-
eration. To bridge the gaps between video and audio, we
proposed a novel video encoding process and a novel
V2RA-GAN architecture. Since the generated results were
limited by the video quality in the dataset, we provided two
audio optimization schemes for audio quality improvement.
Various experiments demonstrated that our method can
achieve comparable audio results.

Our method is not without limitations. One of the main
remaining challenges is how to improve the robustness to
different video qualities. Figure 13 shows a failure case of
an overexposed video. Since the input video is not clear
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Fig. 13. A failure case. The waveform (yellow) and envelope (blue) show the change of audio. The input video is overexposed, resulting in unclear
image contents. The video frames in red boxes are correctly matched, however, the video frames in green boxes are mismatched.

(overexposed in Figure 13), the proposed network cannot
accurately detect changes in the video content. As a result,
we can observe that the synthesized sound and the video
content are out of synchronization. Tackling such types of
challenges would need a deeper understanding of video
features. Another failure case is testing with videos in
mismatched categories. For example, our model can not
generate dog barking with bird singing videos as the train-
ing set. Overall, we hope that this work can catalyze fu-
ture investigation of GANs for V2RA generation, and open
up more possible directions for future research including
environmental sound recognition and environmental scene
understanding.
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